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Abstract

We investigate the preparation and stabilization of multimode cat
states in a one-dimensional array of Kerr resonators subject to para-
metric two-photon drive and nonlocal dissipation. By transform-
ing the system into the plane-wave basis, we analyze the dynamics
and identify a decoherence-free subspace (DFS) where dark states re-
side. Numerical simulations using the QuTiP confirm that the system
evolves into the cat state of a collective bosonic basis, and we provide
the Python code used for these simulations.

1 Introduction

Quantum superposition states, such as Schrödinger cat states, play a cru-
cial role in quantum error correction and quantum computation. In this
report, we explore a scheme to prepare and stabilize multimode cat states in
a dissipative quantum system composed of a one-dimensional array of Kerr
resonators. We analyze the system’s dynamics under the influence of nonlo-
cal dissipation and a two-photon drive and identify conditions under which
the system reaches a steady state within a decoherence-free subspace (DFS).
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2 Model

We consider a one-dimensional array of N Kerr resonators, each subjected
to a parametric two-photon drive. In a frame rotating at the resonator fre-
quency, the Hamiltonian of the system is given by

Ĥ = ĤU + ĤG, (1)

where

ĤU = U
N∑
j=1

â†2j â
2
j (2)

is the Kerr nonlinearity term with strength U , and

ĤG = G
N∑
j=1

(
e−iθj â†2j + eiθj â2j

)
(3)

is the two-photon drive term with amplitude G and phase offset per site θ.

2.1 Transformation to Plane-Wave Basis

To simplify the analysis, we assume periodic boundary conditions âN+1 = â1
and transform the Hamiltonian into the plane-wave basis using the Fourier
transform:

b̂k =
1√
N

N∑
j=1

eikj âj, (4)

where k = 2πm
N

with m ∈ {0, 1, . . . , N − 1}. The inverse transform is

âj =
1√
N

∑
k

e−ikj b̂k. (5)

In the plane-wave basis, the Kerr nonlinearity term becomes

ĤU =
U

N

∑
k1,k2,k3,k4

δk1+k2,k3+k4 b̂
†
k1
b̂†k2 b̂k3 b̂k4 , (6)

where the Kronecker delta ensures conservation of total quasimomentum.
The two-photon drive term transforms to

ĤG = G
∑
k

(
b̂†kb̂

†
θ−k + b̂kb̂θ−k

)
. (7)
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2.2 Nonlocal Dissipation

The system is subject to nonlocal dissipation described by the Lindblad mas-
ter equation:

˙̂ρ = −i[Ĥ, ρ̂] + γ

N∑
j=1

D[âj − eiϕâj+1]ρ̂, (8)

where γ is the dissipation rate, ϕ is a phase offset, and D[Ô]ρ̂ = Ôρ̂Ô† −
1
2
{Ô†Ô, ρ̂}.
This nonlocal dissipation operator can be realized by coupling the adja-

cent two cavities to a waveguide [2].
Transforming the dissipation term into the plane-wave basis, we find

γ
N∑
j=1

D[âj − eiϕâj+1]ρ̂ =
∑
k

γkD[b̂k]ρ̂, (9)

where the mode-dependent dissipation rates are

γk = 2γ [1− cos(k − ϕ)] . (10)

Notably, for k = ϕ, the dissipation rate γk vanishes, indicating the presence
of a decoherence-free subspace.

3 Solution of steady state

3.1 Steady State in Plane-wave Basis

We aim to characterize the steady states of the master equation, focusing on
identifying dark states within the DFS. These dark states satisfy [3]:

b̂k|Ψ⟩ = 0 for all k ̸= ϕ, (11)

and
Ĥ|Ψ⟩ = ϵ|Ψ⟩. (12)

The dark state condition can be rewritten as:∑
k

b̂†kb̂
†
2ϕ−k(b̂

2
ϕ − ζ2)|Ψ⟩ = ζ∗2

(
b̂2ϕ −

ϵ

G

)
|Ψ⟩, (13)
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where ζ = i
√
NG/U . For ϵ = Gζ2, this leads to:

(b̂ϕ − ζ)(b̂ϕ + ζ)|ψ⟩ϕ = 0. (14)

We find that the eigenstates are the even and odd cat states in the mode
k = ϕ:

|Ψ±
ϕ ⟩ = N± (|ζ⟩ϕ ± | − ζ⟩ϕ) , (15)

where |ζ⟩ϕ is a coherent state of mode ϕ, andN± are normalization constants.

3.2 Multimode Cat States in Local Basis

Transforming back to the local basis, the dark states (multimode cat states)
are

|C±⟩ = N±

(
N⊗
j=1

|ζj⟩j ±
N⊗
j=1

| − ζj⟩j

)
, (16)

where

ζj =

(
ζ√
N

)
e−iϕj. (17)

4 Steady-State Preparation of Multimode Cat

States

To prepare the multimode cat state |C+⟩, we initialize the system in the
vacuum state ρ̂in = |000⟩⟨000| and let it evolve under the master equation.
We perform numerical simulations using the QuTiP library [1] to solve the
master equation.

The simulations demonstrate that the populations of modes with k ̸= ϕ
remain zero, leading the system to evolve into a steady-state cat state, as
illustrated in Figs. 1 and 2.

By transforming the system to the local basis and performing a partial
trace, we obtain the Wigner function for the local mode, depicted in Figs. 3, 4,
and 5. The results show that the coherent states of different modes are phase-
shifted by ϕ, aligning with theoretical predictions (Eq. 17). Additionally, the
Wigner function of a single local mode does not exhibit the interference
fringes typical of a cat state. This absence is due to the system being in
a multimode entangled cat state(Eq. 16), analogous to a GHZ state in the
coherent basis. After performing the partial trace, the reduced state of a
single mode is a mixed state composed of two coherent states.
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Figure 1: Average photon number evolution of three mode

Figure 2: Wigner function of the DFI mode
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Figure 3: Wigner function of the local mode 0

Figure 4: Wigner function of the local mode 1

Figure 5: Wigner function of the local mode 2
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5 Conclusion

We have demonstrated that multimode cat states can be prepared and stabi-
lized in a one-dimensional array of Kerr resonators with nonlocal dissipation
and two-photon drive. The identification of a decoherence-free subspace and
the analysis of the system’s dynamics provide a solid foundation for the ex-
perimental realization of such states.

References

[1] J Robert Johansson, Paul D Nation, and Franco Nori. Qutip: An open-
source python framework for the dynamics of open quantum systems.
Computer physics communications, 183(8):1760–1772, 2012.

[2] Anja Metelmann and Aashish A Clerk. Nonreciprocal photon trans-
mission and amplification via reservoir engineering. Physical Review X,
5(2):021025, 2015.

[3] Petr Zapletal, Andreas Nunnenkamp, and Matteo Brunelli. Stabilization
of multimode schrödinger cat states via normal-mode dissipation engi-
neering. PRX Quantum, 3(1):010301, 2022.

7


	Introduction
	Model
	Transformation to Plane-Wave Basis
	Nonlocal Dissipation

	Solution of steady state
	Steady State in Plane-wave Basis
	Multimode Cat States in Local Basis

	Steady-State Preparation of Multimode Cat States
	Conclusion

