Numerical Dynamics Simulation and
Steady-State Analysis of Multimode Cat
States

Ziyu He

December 19, 2024

Abstract

We investigate the preparation and stabilization of multimode cat
states in a one-dimensional array of Kerr resonators subject to para-
metric two-photon drive and nonlocal dissipation. By transform-
ing the system into the plane-wave basis, we analyze the dynamics
and identify a decoherence-free subspace (DFS) where dark states re-
side. Numerical simulations using the QuTiP confirm that the system
evolves into the cat state of a collective bosonic basis, and we provide
the Python code used for these simulations.

1 Introduction

Quantum superposition states, such as Schrodinger cat states, play a cru-
cial role in quantum error correction and quantum computation. In this
report, we explore a scheme to prepare and stabilize multimode cat states in
a dissipative quantum system composed of a one-dimensional array of Kerr
resonators. We analyze the system’s dynamics under the influence of nonlo-
cal dissipation and a two-photon drive and identify conditions under which
the system reaches a steady state within a decoherence-free subspace (DFS).



2 Model

We consider a one-dimensional array of N Kerr resonators, each subjected
to a parametric two-photon drive. In a frame rotating at the resonator fre-
quency, the Hamiltonian of the system is given by

H = Hy + H, (1)
where
N
Hy=U) alal (2)
j=1

is the Kerr nonlinearity term with strength U, and
N
flo =Gy (eal + e"a) (3)
j=1
is the two-photon drive term with amplitude G and phase offset per site 6.

2.1 Transformation to Plane-Wave Basis

To simplify the analysis, we assume periodic boundary conditions ayy1 = a1
and transform the Hamiltonian into the plane-wave basis using the Fourier
transform:

N
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where k = =5 with m € {0,1,..., N — 1}. The inverse transform is
R 1 e
aj:—Ze ljbk. (5)
VN <

In the plane-wave basis, the Kerr nonlinearity term becomes

N U N
Hy =+ Z 6k1+/€2,k3+k4b£1 bl]::2 bkgbk4, (6)

k1,k2,ks3,kq

where the Kronecker delta ensures conservation of total quasimomentum.
The two-photon drive term transforms to

o = &Y (BB + o) 7)
k
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2.2 Nonlocal Dissipation

The system is subject to nonlocal dissipation described by the Lindblad mas-

ter equation:
N

p= _Z.[Ha ﬁ] +7 Z D[dj - ewderl]/a? (8>
j=1
where 7 is the dissipation rate, ¢ is a phase offset, and D[OA} b = 0pOt —
{00, p}.
This nonlocal dissipation operator can be realized by coupling the adja-
cent two cavities to a waveguide [2].
Transforming the dissipation term into the plane-wave basis, we find

v Dla; — ajnlp Z Db p (9)

where the mode-dependent dissipation rates are

Yk =27 [1 — cos(k — ¢)]. (10)

Notably, for k = ¢, the dissipation rate 7, vanishes, indicating the presence
of a decoherence-free subspace.

3 Solution of steady state

3.1 Steady State in Plane-wave Basis

We aim to characterize the steady states of the master equation, focusing on
identifying dark states within the DFS. These dark states satisfy [3]:

be|T) =0 for all k # ¢, (11)

and

H|T) = €| D). (12)

The dark state condition can be rewritten as:

D Wb all - Oy = ¢ (-5) . (13)



where ( = i4/NG/U. For e = G¢?, this leads to:

(by = Q) (bs + Q) = 0. (14)

We find that the eigenstates are the even and odd cat states in the mode
k= ¢:

[T5) = Na (106 £ 1= ), (15)

where |(), is a coherent state of mode ¢, and N, are normalization constants.

3.2 Multimode Cat States in Local Basis

Transforming back to the local basis, the dark states (multimode cat states)

are
N N
|CF) = N (® 6 £ )| — Cj>j> , (16)
j=1 j=1
where

(= (\/LN) e i, (17)

4 Steady-State Preparation of Multimode Cat
States

To prepare the multimode cat state |CT), we initialize the system in the
vacuum state py, = [000)(000| and let it evolve under the master equation.
We perform numerical simulations using the QuTiP library [I] to solve the
master equation.

The simulations demonstrate that the populations of modes with k& # ¢
remain zero, leading the system to evolve into a steady-state cat state, as
illustrated in Figs. [I] and [2]

By transforming the system to the local basis and performing a partial
trace, we obtain the Wigner function for the local mode, depicted in Figs. [3] [4]
and[5] The results show that the coherent states of different modes are phase-
shifted by ¢, aligning with theoretical predictions (Eq. [17)). Additionally, the
Wigner function of a single local mode does not exhibit the interference
fringes typical of a cat state. This absence is due to the system being in
a multimode entangled cat state(Eq. , analogous to a GHZ state in the
coherent basis. After performing the partial trace, the reduced state of a
single mode is a mixed state composed of two coherent states.
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Average Particle Number vs Time for Each Mode
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Figure 1: Average photon number evolution of three mode

Wigner Function of Decoherence-Free Mode (k=2.09)
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Figure 2: Wigner function of the DFI mode
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Figure 3: Wigner function of the local mode 0
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Figure 4: Wigner function of the local mode 1
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Figure 5: Wigner function of the local mode 2



5 Conclusion

We have demonstrated that multimode cat states can be prepared and stabi-
lized in a one-dimensional array of Kerr resonators with nonlocal dissipation
and two-photon drive. The identification of a decoherence-free subspace and
the analysis of the system’s dynamics provide a solid foundation for the ex-
perimental realization of such states.
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