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Introduction

This research project investigated ultracold 166Er atoms confined in a two-dimensional box trap. The
main goal was to use time-of-flight (ToF) measurements to obtain the particle distribution, calculate
the theoretical distribution under specific chemical potentials and temperatures, and perform fitting to
determine the sample’s temperature and chemical potential.

This study is part of a broader project on two-dimensional ultracold atomic gases. In our experiment,
a strong harmonic potential was applied along the z-direction to achieve quasi-two-dimensional confine-
ment. The quasi-2D condition requires that both the chemical potential and temperature are smaller
than the energy gap between the ground state and the first excited state of the harmonic potential. To
determine the sample’s temperature and chemical potential, time-of-flight (ToF) imaging and Equation
of State (EoS) methods are commonly used [1]. However, due to the attractive red-detuned optical dipole
trap used in our setup, the EoS method is inapplicable, making it necessary to use ToF measurements.

Methods and Procedures

1. Theoretical Calculations

1.1 Numerical Methods in Hartree-Fock Calculations

The Hartree-Fock (HF) method was employed to obtain the eigenstates and eigenenergies of the inter-
acting particle system [2, 4]. We discretized the spatial domain along the z-axis using a finite difference
method, with a discretization step size ∆z and a grid spanning from−L to L, where L is the dimensionless
length parameter.

The single-particle wavefunctions ϕj(z) are determined by solving the discretized Hartree-Fock equa-
tion: [

− h̄2

2m

d2

dz2
+ Vtrap(z) + 2gn(z)

]
ϕj(z) = εjϕj(z), (1)

where Vtrap(z) =
1
2mω2

zz
2 is the harmonic trap potential. The second derivative was approximated

using a central difference scheme, resulting in a tridiagonal matrix for efficient computation. We em-
ployed the ‘eigh tridiagonal’ function from the SciPy library in Python to solve for the eigenvalues and
eigenvectors.

To improve numerical stability and accuracy, we nondimensionalized the equations by introducing
scaled units:

z̃ =
z

ℓz
,

ε̃j =
εj
h̄ωz

.

Here, ℓz =
√
h̄/(mωz) is the harmonic oscillator length. The particle number density n(z) was

calculated iteratively using the self-consistent equations:

n(z) = − 1

λ2

∑
j

ln
[
1− e(µ−εj)/(kBT )

]
|ϕj(z)|2, (2)

where λ =
√
2πh̄2/(mkBT ) is the thermal de Broglie wavelength, µ is the chemical potential, and T

is the temperature. The iteration continued until convergence was achieved.
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1.2 Computational Efficiency in ToF Calculations

To calculate the particle distribution after time-of-flight, we needed to perform convolutions of the initial
density distribution with a free-space propagation kernel. The integral for the ToF distribution is given
by [1]:

ni(r, t) =
m2

(2πh̄t)2

∫
Lx,Ly

d2r′ g0

(
Zie

−a|r−r′|2
)
, (3)

where a = m/(2t2kBT ). To improve computational efficiency, we transformed the convolution into
the frequency domain using Fast Fourier Transforms (FFT). This significantly reduced the computation
time compared to direct numerical integration.

2. Experimental Data Processing

2.1 Data Reading and Averaging

Experimental data in HDF5 format were read using the ‘h5py’ library. The optical density (OD) im-
ages were extracted and transposed to match the coordinate system used in our analysis. We iden-
tified the region of interest by thresholding the OD images and locating the brightest area using the
‘scipy.ndimage.label’ function.

The OD is related to the particle number density n by:

n =
OD

σ0
, (4)

where σ0 is the resonant cross-section:

σ0 =
3λ2

2π
. (5)

We cropped the region containing the highest signal to focus on the atoms in the trap and averaged
over 30 measurements to improve reliability.

2.2 Data Correction and Alignment

The experimental data contained background noise and slight misalignments. We subtracted a linear
background from the integrated density profiles to correct for any residual background signal. To align
the density profiles, we interpolated the data and shifted the peak position to x = 0 by finding the
maximum of the interpolated function using the ‘minimize scalar’ function from SciPy.

3. Parameter Fitting

3.1 Definition of Loss Function

We defined a custom loss function that focuses on the thermal wings of the density profile, ignoring the
central region where a condensate may be present [3]. The loss function is given by:

Loss(T, µ) =
∑

|x|>x0

[nexp(x)− ntheory(x;T, µ)]
2
, (6)

where x0 is a cutoff position defining the wings, nexp(x) is the experimental density, and ntheory(x;T, µ)
is the theoretical density computed using the methods described above.

3.2 Optimization Algorithms

We performed a two-parameter fitting using the L-BFGS-B optimization algorithm implemented in
SciPy’s ‘minimize’ function. The initial guesses and bounds for the temperature T and chemical potential
µ were set based on expected physical values. Constraints were applied to ensure that the optimized
parameters remained within physically meaningful ranges.
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Results

1. Theoretical Calculations

Using the Hartree-Fock method with the numerical techniques described, we obtained the eigenstates
and eigenenergies of the interacting 166Er system under various chemical potentials and temperatures.
The nondimensionalization improved the stability and convergence of the numerical solutions.

Figure 1 shows theoretical predictions of the ToF particle density at various times, illustrating that
the box trap shape is preserved during expansion.

Figure 1: Theoretical ToF predictions at various times.

2. Comparison between Hartree-Fock Methods

We compared the Hartree-Fock method under different approaches—considering interactions versus ne-
glecting interactions—to understand their impact on energy levels and occupations. Figure 2 shows the
difference in particle densities for lower modes, highlighting the importance of interactions.

Figure 2: Particle density of different modes, comparing interacting case with non-interacting case.

3. Experimental Data Analysis

Experimental data from 30 ToF images were processed to obtain the average particle density distri-
bution (Figure 3). The two-dimensional particle density was integrated along the z-axis to obtain a
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one-dimensional profile along the x-axis (Figure 4).

Figure 3: Average ToF data.

Figure 4: Density distribution along the x-axis.

4. Parameter Fitting

The optimal fitting was performed on the thermal wings of the experimental data, yielding a temperature
of T = 5.9 × 10−8 K and a chemical potential of µ = 3.04 × 10−31 J. Figure 5 shows the comparison
between the experimental and theoretical density profiles.
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Figure 5: Fitting of the density distribution along the x-axis.

Challenges Overcome

1. Numerical Issues in Hartree-Fock Calculations

During the numerical solution of the Hartree-Fock equations, I encountered issues with incorrect results
that were strongly dependent on the discretization step size. By nondimensionalizing the equations
and carefully choosing the discretization parameters, I improved the numerical stability and accuracy.
Utilizing efficient tridiagonal matrix solvers further enhanced computational performance.

2. Computational Efficiency in ToF Calculations

The original integration method for ToF distributions was inefficient. By implementing Fast Fourier
Transforms (FFT) to perform convolutions in the frequency domain, I significantly improved computa-
tional speed, reducing computation time from hours to minutes.

3. Experimental Data Preprocessing

The experimental data contained significant background noise and off-center peak positions. I designed
a preprocessing procedure that included thresholding to identify the region of interest, background sub-
traction to remove noise, and alignment of the density profiles by shifting the peak positions. This
ensured the data were suitable for reliable fitting.

Skills and Knowledge Gained

1. Hartree-Fock Method and Numerical Solutions

Mastered the application of the Hartree-Fock method to interacting particle systems, particularly in
calculating energy eigenstates and particle density distributions. Learned to improve numerical precision
by nondimensionalizing differential equations and utilizing efficient numerical solvers.

2. Computational Efficiency Optimization

Enhanced my understanding of numerical efficiency by transforming integration problems into the fre-
quency domain using FFTs, significantly improving calculation speed.
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3. Experimental Data Processing and Fitting

Gained experience in preprocessing experimental data, including thresholding, background subtraction,
and peak alignment. Learned to define effective loss functions for parameter fitting and utilized opti-
mization algorithms to extract physical parameters.

4. Literature Review and Theoretical Insights

Conducted a literature review on ultracold atoms, understanding topics such as the two-dimensional
Berezinskii-Kosterlitz-Thouless (BKT) transition, superfluidity, and the Gross-Pitaevskii equation (GPE).

5. Overall Research Competency

Improved understanding of the theory-experiment interplay, developed independent problem-solving
skills, and gained confidence in tackling research questions.

Conclusion

This study investigated the particle number density distribution of ultracold 166Er atoms in a two-
dimensional box trap. Using time-of-flight measurements, data preprocessing, and parameter fitting, we
extracted key physical parameters such as the temperature and chemical potential of the sample.

Challenges such as numerical stability, computational efficiency, and experimental data preprocessing
were successfully addressed, resulting in reliable theoretical and experimental comparisons. The project
allowed me to master key methods in ultracold atomic physics, gain practical experience in numerical
and experimental techniques, and deepen my understanding of two-dimensional superfluidity and the
BKT transition.

Future Work

Future research could focus on exploring the effects of varying interaction strengths and trap geometries
on particle distribution. Implementing more advanced many-body techniques, such as Quantum Monte
Carlo simulations, could provide deeper insights into the system’s behavior beyond the Hartree-Fock
approximation.
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